Autoencoder-Enhanced Clustering: A Dimensionality Reduction Approach to Financial Time Series
Daniel González Cortés,
Enrique Onieva,
Iker Pastor López
et al.
Abstract:While Machine Learning significantly boosts the performance of predictive models, its efficacy varies across different data dimensions. It is essential to cluster time series data of similar characteristics, particularly in the financial sector. However, clustering financial time series data poses considerable challenges due to the market's inherent complexity and multidimensionality. To address these issues, our study introduces a novel clustering framework that leverages autoencoders for a compressed yet inf… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.