Objective. Similar to patients with systemic lupus erythematosus, autoimmune MRL/lpr mice spontaneously develop behavioral deficits and pathologic changes in the brain. Given that the disease-associated brain atrophy in this model is not well understood, the present study was undertaken to determine the time course of morphometric changes in major brain structures of autoimmune MRL/lpr mice.Methods. Computerized planimetry and highresolution magnetic resonance imaging (MRI) were used to compare the areas and volumes of brain structures in cohorts of mice that differ in severity of lupus-like disease.Results. A thinner cerebral cortex and smaller cerebellum were observed in the MRL/lpr substrain, even before severe autoimmunity developed. With progression of the disease, the brain area of coronal sections became smaller and the growth of the hippocampus was retarded, which likely contributed to the increase in the ventricle area:brain area ratio. MRI revealed reduced volume across different brain regions, with the structures in the vicinity of the ventricular system particularly affected. The superior colliculus, periaqueductal gray matter, pons, and midbrain were among the regions most affected, whereas the volumes of the parietal-temporal lobe, parts of the cerebellum, and lateral ventricles in autoimmune MRL/lpr mice were comparable with values in congenic controls.Conclusion. These results suggest that morphologic alterations in the brains of MRL/lpr mice are a consequence of several factors, including spontaneous development of lupus-like disease. A periventricular pattern of parenchymal damage is consistent with the cerebrospinal fluid neurotoxicity, limbic system pathologic features, and deficits in emotional reactivity previously documented in this model.
Neuropsychiatric (NP) manifestations are a common and serious complication of systemic lupus erythematosus (SLE). Contemporary imaging techniques have revealed various abnormalities in patients withSLE, including lesions in the periventricular and subcortical regions (1,2), hypoperfusion (3), and regional metabolic abnormalities (4). Brain atrophy is the most frequent observation (5) and is likely a consequence of widespread neuronal and glial damage (6). Consistent with these reports, recent studies on water diffusivity indicate a genuine loss of brain-tissue integrity in patients with NPSLE/central nervous system (CNS) lupus (7). However, the lack of understanding of CNS damage led to development of animal models of acute and chronic lupus and dissection of complex pathogenic circuits (8).MRL/MpJTnfrsf6 lpr (MRL/lpr) mice and MRL/ MpJϩ/ϩ (MRLϩ/ϩ) congenic control mice share more than 99.9% of their genome but differ in the onset of lupus-like manifestations. The 3-4-month difference in the time to onset allows discrimination of autoimmunityinduced functional and structural brain damage from epiphenomena associated with aging and with damage of vital peripheral organs (9). In addition to accelerated development of serologic signs of inflammation and aut...