Wiskott-Aldrich syndrome (WAS) is a primary immunodeficiency characterized by the contradictory coexistence of impaired T-cell function and exaggerated T-cell-mediated pathology, including autoimmunity and eczema. WAS protein (WASp)-deficient mice are also immunodeficient and can develop autoimmune disease. Since defects in regulatory T-cells (Treg) are associated with autoimmunity, we examined the presence and function of these cells in WAS patients and WASpdeficient mice. We found that CD4 + CD25 + FOXP3 + Treg cells can develop in the absence of WASp expression. However, Treg cells both from WASp-deficient mice and from four out of five WAS patients studied showed impaired in vitro suppressor function. In WASp-deficient mice, this defect could be partially rescued by pre-activation with IL-2, suggesting that inadequate cell activation may play a role in WASp-deficient Treg dysfunction. These findings may provide insights into the complex pathophysiology and paradoxical phenotypes of WAS and suggest new therapeutic modalities for autoimmunity in these patients.