“…LTL of finite traces (LTL f ) (De Giacomo and Vardi, 2013) and co-safe LTL (scLTL) (Kupferman and Vardi, 2001) are an efficient fragment of LTL designed to analyze and verify finite properties. Since robotic tasks usually have a defined ending criterion, LTL f and scLTL are well suited as a specification language in task planning (Wells et al, 2020;He et al, 2019He et al, , 2018He et al, , 2015Vasilopoulos et al, 2021;Lacerda et al, 2014;Schillinger et al, 2018). All classical LTL definitions or fragments thereof rely on discrete time and Boolean predicates, but some define quantitative predicates (Li et al, 2017) or robustness metrics (Vasile et al, 2017;Tumova et al, 2013).…”