The paper proposes and explores a new blockchain system that operates on a linearly scalable consensus mechanism. This selection method confirms the shard through shares voting and scalable random generation by VDF (Verifiable Delay Function) and VRF (Verifiable Random Function). The system analyzes available consensus mechanisms, sharding, and the age of distributed randomness. It is energy efficient, fully scalable, secure, with fast consensus. Compared to available methods, the improved shard method performs network connection and transaction verification and reveals the state of the blockchain. The threshold has a sufficiently low coefficient for small validators to participate in the network and receive rewards. The proposed sharding process runs securely due to a distributed randomness (DRG) process that is unpredictable, impartial, and verified. The network is constantly overloaded to prevent slow adaptive Byzantine malicious validators. Contrary to other sharding blockchains that require Proof-of-Work to select validators, the proposed consensus is attributed to Proof-of-Stake, therefore, energy-efficient. Herein the consensus is achieved by a BFT algorithm which is linearly scalable and faster than PBFT.