Purpose
To investigate the use and efficiency of 3‐D deep learning, fully convolutional networks (DFCN) for simultaneous tumor cosegmentation on dual‐modality nonsmall cell lung cancer (NSCLC) and positron emission tomography (PET)‐computed tomography (CT) images.
Methods
We used DFCN cosegmentation for NSCLC tumors in PET‐CT images, considering both the CT and PET information. The proposed DFCN‐based cosegmentation method consists of two coupled three‐dimensional (3D)‐UNets with an encoder‐decoder architecture, which can communicate with the other in order to share complementary information between PET and CT. The weighted average sensitivity and positive predictive values denoted as Scores, dice similarity coefficients (DSCs), and the average symmetric surface distances were used to assess the performance of the proposed approach on 60 pairs of PET/CTs. A Simultaneous Truth and Performance Level Estimation Algorithm (STAPLE) of 3 expert physicians’ delineations were used as a reference. The proposed DFCN framework was compared to 3 graph‐based cosegmentation methods.
Results
Strong agreement was observed when using the STAPLE references for the proposed DFCN cosegmentation on the PET‐CT images. The average DSCs on CT and PET are 0.861 ± 0.037 and 0.828 ± 0.087, respectively, using DFCN, compared to 0.638 ± 0.165 and 0.643 ± 0.141, respectively, when using the graph‐based cosegmentation method. The proposed DFCN cosegmentation using both PET and CT also outperforms the deep learning method using either PET or CT alone.
Conclusions
The proposed DFCN cosegmentation is able to outperform existing graph‐based segmentation methods. The proposed DFCN cosegmentation shows promise for further integration with quantitative multimodality imaging tools in clinical trials.