Recent advances have enabled mapping of histone modifications in single cells, but current methods are constrained to profile only one histone modification per cell. Here we present an integrated experimental and computational framework, scChIX (single-cell chromatin immunocleavage and unmixing), to map multiple histone modifications in single cells. We first validate this method using purified blood cells and show that although the two repressive marks, H3K27me3 and H3K9me3, are generally mutually exclusive, the transitions between the two regions can vary between cell types. Next we apply scChIX to a heterogenous cell population from mouse bone marrow to generate linked maps of active (H3K4me1) and repressive (H3K27me3) chromatin landscapes in single cells, where coordinates in the active modification map correspond to coordinates in the repressive map. Linked analysis reveals that immunoglobulin genes in the region are in a repressed chromatin state in pro-B cells, but become activated in B cells. Overall, scChIX unlocks systematic interrogation of the interplay between histone modifications in single cells.