July 1999This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made before publication, this preprint is made available with the understanding that it will not be cited or reproduced without the permission of the author.
PREPRINTThis paper was prepared for submittal to the DISCLAIMER This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes.
National Ignition Facility Small Optics Laser-Induced Damage and Photometry Measurements ProgramLynn Sheehan*, James L. Hendrix**, Colin Battersby*, Stan Oberhelman*
University of California
Abstract:The National Ignition Facility will require upwards of 25,000 small optical components in its various beam conditioning and diagnostic packages. A quality control program designed to ensure that the elements meet the required specifications will test these optical elements. For many of the components, damage performance is one of the critical specifications, which will require state-of-the-art performance from the industry participants. A program was initiated to understand the current performance level of such optics. The results of this study as it pertains to laser-induced damage is shown. The use of ratio reflectometry is also addressed as the method of choice for photometry measurements on these industry supplied optics.