Streambed grain sizes control river hydro‐biogeochemical (HBGC) processes and functions. However, measuring their quantities, distributions, and uncertainties is challenging due to the diversity and heterogeneity of natural streams. This work presents a photo‐driven, artificial intelligence (AI)‐enabled, and theory‐based workflow for extracting the quantities, distributions, and uncertainties of streambed grain sizes from photos. Specifically, we first trained You Only Look Once, an object detection AI, using 11,977 grain labels from 36 photos collected from nine different stream environments. We demonstrated its accuracy with a coefficient of determination of 0.98, a Nash–Sutcliffe efficiency of 0.98, and a mean absolute relative error of 6.65% in predicting the median grain size of 20 ground‐truth photos representing nine typical stream environments. The AI is then used to extract the grain size distributions and determine their characteristic grain sizes, including the 10th, 50th, 60th, and 84th percentiles, for 1,999 photos taken at 66 sites within a watershed in the Northwest US. The results indicate that the 10th, median, 60th, and 84th percentiles of the grain sizes follow log‐normal distributions, with most likely values of 2.49, 6.62, 7.68, and 10.78 cm, respectively. The average uncertainties associated with these values are 9.70%, 7.33%, 9.27%, and 11.11%, respectively. These data allow for the computation of the quantities, distributions, and uncertainties of streambed HBGC parameters, including Manning's coefficient, Darcy‐Weisbach friction factor, top layer interstitial velocity magnitude, and nitrate uptake velocity. Additionally, major sources of uncertainty in grain sizes and their impact on HBGC parameters are examined.