Timestamps in the Radiology Information System (RIS) are a readily available and valuable source of information with increasing significance, among others, due to the current focus on the clinical impact of artificial intelligence applications. We aimed to evaluate timestamp-based radiological dictation time, introduce timestamp modeling techniques, and compare those with prospective measured reporting. Dictation time was calculated from RIS timestamps between 05/2010 and 01/2021 at our institution (n = 108,310). We minimized contextual outliers by simulating the raw data by iteration (1000, vector size (µ/sd/λ) = 100/loop), assuming normally distributed reporting times. In addition, 329 reporting times were prospectively measured by two radiologists (1 and 4 years of experience). Altogether, 106,127 of 108,310 exams were included after simulation, with a mean dictation time of 16.62 min. Mean dictation time was 16.05 min head CT (44,743/45,596), 15.84 min for chest CT (32,797/33,381), 17.92 min for abdominal CT (n = 22,805/23,483), 10.96 min for CT foot (n = 937/958), 9.14 min for lumbar spine (881/892), 8.83 min for shoulder (409/436), 8.83 min for CT wrist (1201/1322), and 39.20 min for a polytrauma patient (2127/2242), without a significant difference to the prospective reporting times. In conclusion, timestamp analysis is useful to measure current reporting practice, whereas body-region and radiological experience are confounders. This could aid in cost–benefit assessments of workflow changes (e.g., AI implementation).