In recent years, artificial intelligence technology has been widely used in fault prediction and health management (PHM). The machine learning algorithm is widely used in the condition monitoring of rotating machines, and normal and fault data can be obtained through the data acquisition and monitoring system. After analyzing the data and establishing a model, the system can automatically learn the features from the input data to predict the failure of the maintenance and diagnosis equipment, which is important for motor maintenance. This research proposes a medium Gaussian support vector machine (SVM) method for the application of machine learning and constructs a feature space by extracting the characteristics of the vibration signal collected on the spot based on experience. Different methods were used to cluster and classify features to classify motor health. The influence of different Gaussian kernel functions, such as fine, medium, and coarse, on the performance of the SVM algorithm was analyzed. The experimental data verify the performance of various models through the data set released by the Case Western Reserve University Motor Bearing Data Center. As the motor often has noise interference in the actual application environment, a simulated Gaussian white noise was added to the original vibration data in order to verify the performance of the research method in a noisy environment. The results summarize the classification results of related motor data sets derived recently from the use of motor fault detection and diagnosis using different machine learning algorithms. The results show that the medium Gaussian SVM method improves the reliability and accuracy of motor bearing fault estimation, detection, and identification under variable crack-size and load conditions. This paper also provides a detailed discussion of the predictive analytical capabilities of machine learning algorithms, which can be used as a reference for the future motor predictive maintenance analysis of electric vehicles.