2018 IEEE 20th International Conference on E-Health Networking, Applications and Services (Healthcom) 2018
DOI: 10.1109/healthcom.2018.8531161
|View full text |Cite
|
Sign up to set email alerts
|

Automated Gait Analysis using a Kinect Camera and Wavelets

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
6
0
1

Year Published

2019
2019
2024
2024

Publication Types

Select...
6
1
1

Relationship

0
8

Authors

Journals

citations
Cited by 9 publications
(7 citation statements)
references
References 25 publications
0
6
0
1
Order By: Relevance
“…In this analysis, only the ankle data (left and right) were considered. To generate spatiotemporal variables, we select the best wavelet performance, which was obtained by a comparison between multiple wavelet decomposition and the clinical expert judgment [41].…”
Section: Gait Analysis With Waveletmentioning
confidence: 99%
“…In this analysis, only the ankle data (left and right) were considered. To generate spatiotemporal variables, we select the best wavelet performance, which was obtained by a comparison between multiple wavelet decomposition and the clinical expert judgment [41].…”
Section: Gait Analysis With Waveletmentioning
confidence: 99%
“…Cameras are also often used in a motion capture approach, with markers reflecting infrared light, which are tracked in three dimensions with a very high precision and sample rate. Adding a spatial dimension to the camera image is possible with RGB-D cameras (Red-Green-Blue-Depth), like the Microsoft Kinect ® , which was for example used previously for gait analysis in a classification problem in patients with Parkinson’s disease [ 21 , 22 ] or Multiple Sclerosis [ 23 ]. Further research using Kinect sensor was conducted in gait analysis of children with ataxia [ 24 ] or cerebral palsy [ 25 ].…”
Section: Related Workmentioning
confidence: 99%
“…El uso de sensores de profundidad también le permite capturar patrones del movimiento en 3D, con lo que puede ser utilizado para la medición de la marcha. Algunos resultados a favor del uso del Kinect® han reportado: la utilidad para diferenciar pacientes y controles [189,190]; una elevada concordancia con el laboratorio de marcha en la articulación del tobillo, que podría ser útil en el cálculo de las variables clínicas de la marcha [191]; la identificación de pasos en movimiento [192], control postural [193], variables como velocidad, longitud del paso y del ciclo de la marcha [188] en sujetos sanos, la evaluación dinámica de la marcha [194], los movimientos gruesos de extremidades superiores, la lentificación de los movimientos en personas con EP [195] y el coeficiente de asimetría en el balanceo de brazos en personas con EP en estadios tempranos [196].…”
Section: Cualificación Clínica Y Cuantificación De La Marcha Usando Nunclassified