Purpose
To assess the dosimetric performance of an automated breast planning software.
Methods
We retrospectively reviewed 15 breast cancer patients treated with tangent fields according to the RTOG 1005 protocol and 30 patients treated off‐protocol. Planning with electronic compensators (eComps) via manual, iterative fluence editing was compared to an automated planning program called EZFluence (EZF) (Radformation, Inc.). We compared the minimum dose received by 95% of the volume (D95%), D90%, the volume receiving at least 105% of prescription (V105%), V95%, the conformity index of the V95% and PTV volumes (CI95%), and total monitor units (MUs). The PTV_Eval structure generated by EZF was compared to the RTOG 1005 breast PTV_Eval structure.
Results
The average D95% was significantly greater for the EZF plans, 95.0%, vs. the original plans 93.2% (P = 0.022). CI95% was less for the EZF plans, 1.18, than the original plans, 1.48 (P = 0.09). D90% was only slightly greater for EZF, averaging at 98.3% for EZF plans and 97.3% for the original plans (P = 0.0483). V105% (cc) was, on average, 27.8cc less in the EZF breast plans, which was significantly less than for those manually planned. The average number of MUs for the EZF plans, 453, was significantly less than original protocol plans, 500 (P = 8 × 10−6). The average difference between the protocol PTV volume and the EZF PTV volume was 196 cc, with all but two cases having a larger EZF PTV volume (P = 0.020).
Conclusion
EZF improved dose homogeneity, coverage, and MU efficiency vs. manually produced eComp plans. The EZF‐generated PTV eval is based on the volume encompassed by the tangents, and is not appropriate for dosimetric comparison to constraints for RTOG 1005 PTV eval. EZF produced dosimetrically similar or superior plans to manual, iteratively derived plans and may also offer time and efficiency benefits.