Low-field NMR has emerged as a new analytical technique for the investigation of molecular structure and dynamics. Here, we introduce a highly integrated ultralow-frequency NMR spectrometer designed for the purpose of ultralow-field NMR polarimetry of hyperpolarized contrast media. The device measures 10 cm × 10 cm × 2.0 cm and weighs only 370 g. The spectrometer's aluminum enclosure contains all components, including an RF amplifier. The device has four ports for connecting to a high-impedance RF transmit-receive coil, a trigger input, a USB port for connectivity to a PC computer, and an auxiliary RS-485/24VDC port for system integration with other devices. The NMR spectrometer is configured for a pulse-wait-acquirerecover pulse sequence, and key sequence parameters are readily controlled by a graphical user interface (GUI) of a Windows-based PC computer. The GUI also displays the time-domain and Fourier-transformed NMR signal and allows autosaving of NMR data as a CSV file. Alternatively, the RS485 communication line allows for operating the device with sequence parameter control and data processing directly on the spectrometer board in a fully automated and integrated manner. The NMR spectrometer, equipped with a 250 ksamples/s 17-bit analog-to-digital signal converter, can perform acquisition in the 1−125 kHz frequency range. The utility of the device is demonstrated for NMR polarimetry of hyperpolarized 129 Xe gas and [1-13 C]pyruvate contrast media (which was compared to the 13 C polarimetry using a more established technology of benchtop 13 C NMR spectroscopy, and yielded similar results), allowing reproducible quantification of polarization values and relaxation dynamics. The cost of the device components is only ∼$200, offering a low-cost integrated NMR spectrometer that can be deployed as a plug-andplay device for a wide range of applications in hyperpolarized contrast media production�and beyond.