Hydrothermal liquefaction (HTL) is an effective biomass thermochemical conversion technology that can convert organic waste into energy products. However, the HTL process is influenced by various complex factors such as operating conditions, feedstock properties, and reaction pathways. Machine learning (ML) methods can utilize existing HTL data to develop accurate models for predicting product yields and properties, which can be used to optimize HTL operation conditions. This paper presents a bibliometric review on ML applications in HTL from 2020 to 2024. CiteSpace, VOSviewer, and Bibexcel were used to analyze seven key bibliometric attributes: annual publication output, author co-authorship networks, country co-authorship networks, co-citation of references, co-citation of journals, collaborating institutions, and keyword co-occurrence networks, as well as time zone maps and timelines, to identify the development of ML in HTL research. Through the detailed analysis of co-occurring keywords, this study aims to identify frontiers, research gaps, and development trends in the field of ML-aided HTL.