Automated machine learning model for fundus image classification by health-care professionals with no coding experience
Lucas Zago Ribeiro,
Luis Filipe Nakayama,
Fernando Korn Malerbi
et al.
Abstract:To assess the feasibility of code-free deep learning (CFDL) platforms in the prediction of binary outcomes from fundus images in ophthalmology, evaluating two distinct online-based platforms (Google Vertex and Amazon Rekognition), and two distinct datasets. Two publicly available datasets, Messidor-2 and BRSET, were utilized for model development. The Messidor-2 consists of fundus photographs from diabetic patients and the BRSET is a multi-label dataset. The CFDL platforms were used to create deep learning mod… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.