Automated Model Selection Using Bayesian Optimization and the Asynchronous Successive Halving Algorithm for Predicting Daily Minimum and Maximum Temperatures
Dilip Kumar Roy,
Mohamed Anower Hossain,
Mohamed Panjarul Haque
et al.
Abstract:This study addresses the crucial role of temperature forecasting, particularly in agricultural contexts, where daily maximum (Tmax) and minimum (Tmin) temperatures significantly impact crop growth and irrigation planning. While machine learning (ML) models offer a promising avenue for temperature forecasts, the challenge lies in efficiently training multiple models and optimizing their parameters. This research addresses a research gap by proposing advanced ML algorithms for multi-step-ahead Tmax and Tmin fore… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.