Negative events are prevalent all over the globe round the clock. People demonstrate psychological affinity to negative events, and they incline to stay away from troubled locations. This paper proposes an automated geospatial imagery application that would allow a user to remotely extract knowledge of troubled locations. The autonomous application uses thousands of connected news sensors to obtain real-time news pertaining to all global troubles. From the captured news, the proposed application uses artificial intelligence-based services and algorithms like sentiment analysis, entity detection, geolocation decoder, news fidelity analysis, and decomposition tree analysis to reconstruct global threat maps representing troubled locations interactively. The fully deployed system was evaluated for full three months of summer 2021, during which the autonomous system processed above 22 k news from 2397 connected news sources involving BBC, CNN, NY Times, Government websites of 192 countries, and all possible major social media sites. The study revealed 11,668 troubled locations classified successfully with outstanding precision, recall, and F1-score, all evaluated in ubiquitous environment covering mobile, tablet, desktop, and cloud platforms. The system generated interesting global threat maps for robust scenario set of $$3.71 \times {10}^{29}$$
3.71
×
10
29
, to be reported as original fully autonomous remote sensing application of this kind. The research discloses attractive news and global threat-maps with trusted overall classification accuracy.