The demand to explore the largest and also one of the richest part of our planet, the advances in signal processing promoted by an exponential growth in computation power and a thorough study of sound propagation in the underwater realm, lead to remarkable advances in sonar technology in the last years.Since the use of imaging system that rely on electromagnetic waves (optical, laser or radar) is restricted to only very shallow water environments, and given that the good propagation of sound waves in water is known from at least the writings of Leonardo da Vinci, the sonar (sound navigation and raging) systems are the most widespread solution for underwater remote sensing.Sonar systems can be divided into two major types: passive sonar systems that enable detection of a sound emitting target and active sonar systems that use the properties of a signal reflected on the targets for its detection and image formation.As system complexity increases, the study of the way sound is used to obtain reflectivity and bathymetry data from targets and submersed areas becomes fundamental in the performance prediction and development of innovative sonar systems.Because of the many similarities between sonar and radar, algorithms created for the latter found application in sonar systems which made use of the advances in signal processing to overcome the barriers of the problematic underwater propagation medium and to challenge the resolution limits. In particular, synthetic aperture methods, applied with so much success in radar imagery, were adapted to sonar systems. This in turn enabled a considerable increase in sonar image quality and system robustness. Target detection developments lead to the use of multiple transducer sensors and sophisticated beam forming techniques with also excellent results.High quality sonar imagery with reduced noise and enhanced resolution enables more complex applications. Leaving the traditional real of military applications, sonar civil applications arise for the study of biology ecology and related fields. Moreover integration and data fusion of different sensors is becoming more and more common, being it navigation data integration and enhancement for synthetic aperture, sonar systems with different propagation characteristics or optical image integration for the improvement of object detection.But, not unlike natural evolution, a technology that matured in the underwater environments is now being used to solve problems for robots that use the echoes from airacoustic signals to derive their sonar signals.The work on hand is a sum of knowledge of several authors that contributed in various different aspects of sonar technology. This book intends therefore to give a broad overview of the advances in sonar technology of the last years that resulted from the research effort of the authors in both sonar systems and its applications. It is destined to scientist and VIII engineers from a variety of backgrounds and, hopefully, even those that never had contact with sonar technology before will find an ...