Self-organization is a key concept in long-term evolution (LTE) systems to reduce capital and operational expenditures (CAPEX and OPEX). Self-optimization of coverage and capacity, which allows the system to periodically and automatically adjust the key radio frequency (RF) parameters through intelligent algorithms, is one of the most important tasks in the context of self-organizing networks (SON). In this paper, we propose self-optimization of antenna tilt and power using a fuzzy neural network optimization based on reinforcement learning (RL-FNN). In our approach, a central control mechanism enables cooperation-based learning by allowing distributed SON entities to share their optimization experience, represented as the parameters of learning method. Specifically, SON entities use cooperative Q-learning and reinforced back-propagation method to acquire and adjust their optimization experience. To evaluate the coverage and capacity performance of RL-FNN, we analyze cell-edge performance and cell-center performance indicators jointly across neighboring cells and specifically consider the difference in load distribution in a given region. The simulation results show that RL-FNN performs significantly better than the best fixed configuration proposed in the literature. Furthermore, this is achieved with significantly lower energy consumption. Finally, since each self-optimization round completes in less than a minute, RL-FNN can meet the need of practical applications of self-optimization in a dynamic environment.