2007
DOI: 10.1109/tbme.2006.886660
|View full text |Cite
|
Sign up to set email alerts
|

Automated Pediatric Cardiac Auscultation

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
35
0
5

Year Published

2009
2009
2017
2017

Publication Types

Select...
3
3
2

Relationship

0
8

Authors

Journals

citations
Cited by 76 publications
(40 citation statements)
references
References 17 publications
0
35
0
5
Order By: Relevance
“…Klasifikasi sinyal jantung diperlukan untuk mengetahui penyakit jantung yang seringkali datang secara tiba-tiba. Kondisi jantung dapat diketahui melalui aktivitas listrik jantung yang direpresentasikan dalam bentuk grafik menggunakan sebuah instrumen medis yang disebut elektrokardiogram (EKG) [2]. Jantung merupakan organ yang mampu memproduksi muatan listrik.…”
Section: Pendahuluanunclassified
“…Klasifikasi sinyal jantung diperlukan untuk mengetahui penyakit jantung yang seringkali datang secara tiba-tiba. Kondisi jantung dapat diketahui melalui aktivitas listrik jantung yang direpresentasikan dalam bentuk grafik menggunakan sebuah instrumen medis yang disebut elektrokardiogram (EKG) [2]. Jantung merupakan organ yang mampu memproduksi muatan listrik.…”
Section: Pendahuluanunclassified
“…Previous authors have also addressed the analysis and classification of heart sounds [9][10][11][12][13] . Signal processing techniques implemented in the analysis of heart sounds include the Fast Fourier Transform (FFT), Short-Time Fourier Transform (STFT), Wigner Distribution (WD), ChoiWilliams Distribution (CWD) and the Wavelet Transform (WT).…”
Section: Classification Of Heart Soundsmentioning
confidence: 99%
“…Artificial neural networks (ANNs) have been the most widely used machine learning-based approach for heart sound classification. Typical relevant studies used different signal features as the input to the ANN classifier, including wavelet features [7], time, frequency and complexity-based features [8], and time-frequency features [9]. A number of researchers have also applied support vector machines (SVM) for heart sound classification in recent years.…”
Section: Introductionmentioning
confidence: 99%