2020
DOI: 10.1177/0361198120944926
|View full text |Cite
|
Sign up to set email alerts
|

Automated Real-Time Roadway Asset Inventory using Artificial Intelligence

Abstract: Roadway asset inventory data are essential in making data-driven asset management decisions. Despite significant advances in automated data processing, the current state of the practice is semi-automated. This paper demonstrates integration of the state-of-the-art artificial intelligence technologies within a practical framework for automated real-time identification of traffic signs from roadway images. The framework deploys one of the very latest machine learning algorithms on a cutting-edge plug-and-play de… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0
2

Year Published

2021
2021
2024
2024

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 8 publications
(4 citation statements)
references
References 30 publications
0
2
0
2
Order By: Relevance
“…This technique was first used in the early 2000s, and it has since been refined to the point where it can now be used to identify a wide variety of road defects, including cracks, potholes, and missing lane markings. [11] In recent years, there has been a growing interest in using AI for more complex tasks related to road asset inventory, such as pavement condition assessment and traffic flow analysis. These tasks require a deeper understanding of road conditions and traffic patterns, and they can be more challenging to automate.…”
Section: Evolution Of Aimentioning
confidence: 99%
See 1 more Smart Citation
“…This technique was first used in the early 2000s, and it has since been refined to the point where it can now be used to identify a wide variety of road defects, including cracks, potholes, and missing lane markings. [11] In recent years, there has been a growing interest in using AI for more complex tasks related to road asset inventory, such as pavement condition assessment and traffic flow analysis. These tasks require a deeper understanding of road conditions and traffic patterns, and they can be more challenging to automate.…”
Section: Evolution Of Aimentioning
confidence: 99%
“…A recent proposed framework [11] improves the repeatability and cost-effectiveness of the asset inventory process by integrating advanced artificial intelligence technologies for automated real-time detection, classification, and localization of traffic signs from roadway images. This reduces the need for subjective and time-consuming human interventions.…”
Section: Applicationmentioning
confidence: 99%
“…Model, işaretlerin varlığına yeterince duyarlı değilse, o zaman daha fazla false negative değerine sahip olacaktır ve dolayısıyla recall daha yüksek bir değerde olacaktır. Presicion ve recall arasındaki bu potansiyel dengesizlik senaryoları nedeniyle, F1 Score gözetilerek, presicion ve recall arasında bir denge aranması tavsiye edilir[28,37]. Sistem Mimarisi (System Architecture) (predicted bounding box) ile gerçek sınırlayıcı kutunun kesişim alanı ile birleşim alanının oranıdır (Şekil 4).…”
unclassified
“…Çalışmada, 0,50 ve üzeri IoU değerine sahip örnekler kullanılmıştır. Bu, yalnızca tahmini sınırlayıcı kutu ile gerçek sınırlayıcı kutu arasında %50'den fazla örtüşme olan tespitlerin dikkate alınacağı anlamına gelir[28,37].Önerilen bütünleşmiş metodolojinin sonuçları, IoU, mAP, recall ve F1 Score metriklerine göre ele alınmıştır. Şekil 5, test veri setinde toplanan görüntülerde saptanan işaretlerin örneklerini göstermektedir.…”
unclassified