Automated remote sleep monitoring needs machine learning with uncertainty quantification
Elisabeth Heremans,
Laura Van den Bulcke,
Nabeel Seedat
et al.
Abstract:Wearable electroencephalography (EEG) devices emerge as a cost-effective and ergonomic alternative to gold standard polysomnography, paving the way for better health monitoring and sleep disorder screening. Machine learning allows to automate sleep stage classification, but trust and reliability issues have hampered its adoption in clinical applications. Estimating uncertainty is a crucial factor in enhancing reliability by identifying regions of heightened and diminished confidence. In this study, we investig… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.