In this work, we address the task of few-shot medical image segmentation (MIS) with a novel proposed framework based on the learning registration to learn segmentation (LRLS) paradigm. To cope with the limitations of lack of authenticity, diversity, and robustness in the existing LRLS frameworks, we propose the better registration better segmentation (BRBS) framework with three main contributions that are experimentally shown to have substantial practical merit. First, we improve the authenticity in the registration-based generation program and propose the knowledge consistency constraint strategy that constrains the registration network to learn according to the domain knowledge. It brings the semanticaligned and topology-preserved registration, thus allowing the generation program to output new data with great space and style authenticity. Second, we deeply studied the diversity of the generation process and propose the space-style sampling program, which introduces the modeling of the transformation path of style and space change between few atlases and numerous unlabeled images into the generation program. Therefore, the sampling on Manuscript