Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Nowadays, online examination (exam in short) platforms are becoming more popular, demanding strong security measures for digital learning environments. This includes addressing key challenges such as head pose detection and estimation, which are integral for applications like automatic face recognition, advanced surveillance systems, intuitive human–computer interfaces, and enhancing driving safety measures. The proposed work holds significant potential in enhancing the security and reliability of online exam platforms. It achieves this by accurately classifying students’ attentiveness based on distinct head poses, a novel approach that leverages advanced techniques like federated learning and deep learning models. The proposed work aims to classify students’ attentiveness with the help of different head poses. In this work, we considered five head poses: front face, down face, right face, up face, and left face. A federated learning (FL) framework with a pre-trained deep learning model (ResNet50) was used to accomplish the classification task. To classify students’ activity (behavior) in an online exam environment using the FL framework’s local client device, we considered the ResNet50 model. However, identifying the best hyperparameters in the local client ResNet50 model is challenging. Hence, in this study, we proposed two hybrid bio-inspired optimized methods, namely, Particle Swarm Optimization with Genetic Algorithm (PSOGA) and Particle Swarm Optimization with Elitist Genetic Algorithm (PSOEGA), to fine-tune the hyperparameters of the ResNet50 model. The bio-inspired optimized methods employed in the ResNet50 model will train and classify the students’ behavior in an online exam environment. The FL framework trains the client model locally and sends the updated weights to the server model. The proposed hybrid bio-inspired algorithms outperform the GA and PSO when independently used. The proposed PSOGA not only outperforms the proposed PSOEGA but also outperforms the benchmark algorithms considered for performance evaluation by giving an accuracy of 95.97%.
Nowadays, online examination (exam in short) platforms are becoming more popular, demanding strong security measures for digital learning environments. This includes addressing key challenges such as head pose detection and estimation, which are integral for applications like automatic face recognition, advanced surveillance systems, intuitive human–computer interfaces, and enhancing driving safety measures. The proposed work holds significant potential in enhancing the security and reliability of online exam platforms. It achieves this by accurately classifying students’ attentiveness based on distinct head poses, a novel approach that leverages advanced techniques like federated learning and deep learning models. The proposed work aims to classify students’ attentiveness with the help of different head poses. In this work, we considered five head poses: front face, down face, right face, up face, and left face. A federated learning (FL) framework with a pre-trained deep learning model (ResNet50) was used to accomplish the classification task. To classify students’ activity (behavior) in an online exam environment using the FL framework’s local client device, we considered the ResNet50 model. However, identifying the best hyperparameters in the local client ResNet50 model is challenging. Hence, in this study, we proposed two hybrid bio-inspired optimized methods, namely, Particle Swarm Optimization with Genetic Algorithm (PSOGA) and Particle Swarm Optimization with Elitist Genetic Algorithm (PSOEGA), to fine-tune the hyperparameters of the ResNet50 model. The bio-inspired optimized methods employed in the ResNet50 model will train and classify the students’ behavior in an online exam environment. The FL framework trains the client model locally and sends the updated weights to the server model. The proposed hybrid bio-inspired algorithms outperform the GA and PSO when independently used. The proposed PSOGA not only outperforms the proposed PSOEGA but also outperforms the benchmark algorithms considered for performance evaluation by giving an accuracy of 95.97%.
Maintaining the user’s attentional focus has become a recurring concern in recent years. This is due to the consolidation of remote and hybrid models for study and work, which were widely experienced during the social distancing caused by COVID-19. This paper presents a review of works that address this problem by analyzing webcam data, a promising device for behavioral studies. The literature review from 2013 to 2023 was carried out using a hybrid search strategy, through which we selected and analyzed 57 papers. The summary of this study is presented in an interactive visual survey format called the AttentionVis Browser tool. As additional contributions, we provide a list of lessons learned, a list of work limitations, and possibilities for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.