Original scientific paper In this paper a new method based on evolutionary clustering and locally linear neuro-fuzzy (LLNF) models is proposed for the problem of object tracking in videos. This approach utilizes clustering on color feature space to obtain a model of object which is given at the initial frame. To achieve the optimal clustering, evolutionary optimization methods are used. Based on the results of clustering, parameters of LLNF model is determined so it can be used as an identifier of object during the real time video streaming. To track the object, a swarm of weighted evolving linear models are used to estimate the location and size of the object at next frame based on its current and previous states. The performance of the proposed method is evaluated on a benchmark data set and compared to other methods performed on the same data set. The results show that the accuracy of the proposed method is superior to previous methods.
Keywords: clustering; evolutionary computation; Locally Linear Neuro-Fuzzy model; object tracking; swarm optimization
Praćenje predmeta u video snimkama pomoću modela evolucijskog grupiranja i lokalno linearnih neuro-fuzzy modelaIzvorni znanstveni članak U radu se za problem praćenja objekta u video snimkama predlaže nova metoda koja se zasniva na modelima evolucijskog grupiranja i lokalno linearnim neuro-fuzzy modelima (LLNF). Taj pristup koristi grupiranje na prostoru karakteristike u boji kako bi se dobio model predmeta zadanog u početnom okviru. Za postizanje optimalnog grupiranja, primijenjene su metode evolucijske optimizacije. Na temelju rezultata grupiranja određeni su parametri LLNF modela te se on može rabiti kao identifikator objekta tijekom video prijenosa u realnom vremenu. Za praćenje objekta koristi se roj ponderiranih izvedenih linearnih modela za procjenu lokacije i veličine objekta u sljedećem okviru na temelju njegovog postojećeg i prethodnih stanja. Učinkovitost predložene metode procijenjena je na referentnom nizu podataka i uspoređena s drugim metodama provedenim na istom nizu podataka. Rezultati pokazuju da je po točnosti predložena metoda bolja od prethodnih.