2020
DOI: 10.21511/imfi.17(2).2020.16
|View full text |Cite
|
Sign up to set email alerts
|

Automated trading systems’ evaluation using d-Backtest PS method and WM ranking in financial markets

Abstract: Given the popularity and propagation of automated trading systems in financial markets among institutional and individual traders in recent decades, this work attempts to compare and evaluate such ten systems based on different popular technical indicators in combination – for the first time – with the d-Backtest PS method for parameter selection. The systems use the technical indicators of Moving Averages (MA), Average Directional Index (ADX), Ichimoku Kinko Hyo, Moving Average Convergence/Divergence (MACD), … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
1
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 7 publications
(2 citation statements)
references
References 23 publications
(16 reference statements)
0
1
0
1
Order By: Relevance
“…Price forecasts are short-term profitable [8], but trend forecasts are long-term effective. Price forecasting systems use machine learning on time-series data [9], while trend forecasting systems use technical analysis indices. Price forecasting can improve trading outcomes, but price prediction is challenging [2].…”
Section: Introductionmentioning
confidence: 99%
“…Price forecasts are short-term profitable [8], but trend forecasts are long-term effective. Price forecasting systems use machine learning on time-series data [9], while trend forecasting systems use technical analysis indices. Price forecasting can improve trading outcomes, but price prediction is challenging [2].…”
Section: Introductionmentioning
confidence: 99%
“…Por outro lado existem portfólios que não utilizam quaisquer meios de otimizac ¸ão para distribuic ¸ão dinâmica do capital, tendo sido construídos simplesmente com a combinac ¸ão de diversos ATS atuando em um mesmo mercado. Estes sistemas estão sujeitos a prolongados períodos de drawdown (reduc ¸ão de capital) e estudos tem sido feitos sobre como controlar esse risco [Maier-Paape 2018, Vezeris et al 2020]. Nestes casos, através de otimizac ¸ões seria possível melhorar o rendimento e/ou diminuir o risco destes portfólios através de um rebalanceamento do posicionamento do capital dentre os ATS do portfólio.…”
Section: Introduc ¸ãOunclassified