Integration of time-lapse seismic data into dynamic reservoir model is an efficient process in calibrating reservoir parameters update. The choice of the metric which will measure the misfit between observed data and simulated model has a considerable effect on the history matching process, and then on the optimal ensemble model acquired. History matching using 4D seismic and production data simultaneously is still a challenge due to the nature of the two different type of data (time-series and maps or volumes based).
Conventionally, the formulation used for the misfit is least square, which is widely used for production data matching. Distance measurement based objective functions designed for 4D image comparison have been explored in recent years and has been proven to be reliable. This study explores history matching process by introducing a merged objective function, between the production and the 4D seismic data. The proposed approach in this paper is to make comparable this two type of data (well and seismic) in a unique objective function, which will be optimised, avoiding by then the question of weights. An adaptive evolutionary optimisation algorithm has been used for the history matching loop. Local and global reservoir parameters are perturbed in this process, which include porosity, permeability, net-to-gross, and fault transmissibility.
This production and seismic history matching has been applied on a UKCS field, it shows that a acceptalbe production data matching is achieved while honouring saturation information obtained from 4D seismic surveys.