2018
DOI: 10.48550/arxiv.1807.05812
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Automatic acoustic detection of birds through deep learning: the first Bird Audio Detection challenge

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
2
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(3 citation statements)
references
References 0 publications
0
2
0
1
Order By: Relevance
“…[15]. Deep Learning adalah cara untuk mengotomatisasi pekerjaan untuk memprediksi dan mengklasifikasikan data menggunakan jaringan saraf tiruan (artificial neural networks) dengan banyak lapisan (atau "deep") untuk memodelkan abstraksi data yang kompleks [16]. Proses pemasukan data, pengolahan dan penyajiannya akan dilakukan secara otomatis oleh mesin.…”
Section: Pendahuluanunclassified
“…[15]. Deep Learning adalah cara untuk mengotomatisasi pekerjaan untuk memprediksi dan mengklasifikasikan data menggunakan jaringan saraf tiruan (artificial neural networks) dengan banyak lapisan (atau "deep") untuk memodelkan abstraksi data yang kompleks [16]. Proses pemasukan data, pengolahan dan penyajiannya akan dilakukan secara otomatis oleh mesin.…”
Section: Pendahuluanunclassified
“…This is especially true when considering the utilization of audio data to perform various audio recognition tasks, which have recently attracted increasing interest from researchers. As a result, numerous audio recognition systems have been developed, such as for wildlife monitoring [28,36] and surveillance [5]. In addition to monitoring applications, highly accurate acoustic models are utilized for keyword spotting for virtual assistants [23], anomaly detection for machine sounds [18], and in the development of health risk diagnosis systems, such as cardiac arrest detection [4].…”
Section: Introductionmentioning
confidence: 99%
“…This is especially true when considering the utilization of audio data to perform various audio recognition tasks, which have recently attracted increasing interest from researchers. As a result, numerous audio recognition systems have been developed, such as for wildlife monitoring [27,35] and surveillance [5]. In addition to monitoring applications, highly accurate acoustic models are utilized for keyword spotting for virtual assistants [23], anomaly detection for machine sounds [18], and in the development of health risk diagnosis systems, such as cardiac arrest detection [4].…”
Section: Introductionmentioning
confidence: 99%