2011
DOI: 10.3233/jcs-2010-0410
|View full text |Cite
|
Sign up to set email alerts
|

Automatic analysis of malware behavior using machine learning

Abstract: Malicious software -so called malware -poses a major threat to the security of computer systems. The amount and diversity of its variants render classic security defenses ineffective, such that millions of hosts in the Internet are infected with malware in the form of computer viruses, Internet worms and Trojan horses. While obfuscation and polymorphism employed by malware largely impede detection at file level, the dynamic analysis of malware binaries during run-time provides an instrument for characterizing … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

2
402
1
6

Year Published

2015
2015
2023
2023

Publication Types

Select...
4
3
2

Relationship

0
9

Authors

Journals

citations
Cited by 590 publications
(411 citation statements)
references
References 49 publications
2
402
1
6
Order By: Relevance
“…These techniques could be applied to the detection of intrusions (Lane 2000), analyzing malware (Rieck et al 2011), or detecting potential exploits in other programs through code analysis (Brun and Ernst 2004). It is not implausible that cyberattack between states and private actors will be a risk factor for harm from near-future AI systems, motivating research on preventing harmful events.…”
Section: Professional Ethicsmentioning
confidence: 99%
“…These techniques could be applied to the detection of intrusions (Lane 2000), analyzing malware (Rieck et al 2011), or detecting potential exploits in other programs through code analysis (Brun and Ernst 2004). It is not implausible that cyberattack between states and private actors will be a risk factor for harm from near-future AI systems, motivating research on preventing harmful events.…”
Section: Professional Ethicsmentioning
confidence: 99%
“…Also, malware samples that do not belong to the previously defined families can be added as prototypes to the clustering or classification schemes. This method has shown success in the previously published work [35].…”
Section: Intrusion Detection and Analysismentioning
confidence: 72%
“…Ezek a technológiák alkalmazhatók a külön-böző jogtalan behatolások észlelésére (Lane, 2000), a rosszindulatú szoftverek (malware) azonosítására (Rieck et al, 2011), vagy esetleges sérülékenységek feltárására egyéb programok forráskódjának elemzése során (Brun -Ernst, 2004). Nem elképzelhetetlen, hogy az államok és a privát entitások között zajló kibertámadások is alkalmaznak majd a közel-jövőben MI megoldásokat, ezáltal olyan rizikófaktort jelentenek, ami további kutatásokat motivál a káresemények elkerülése érdekében.…”
Section: Biztonságunclassified