Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The most cost-effective data collection method is electroencephalography (EEG) to obtain meaningful information about the brain. Therefore, EEG signal processing is very important for neuroscience and machine learning (ML). The primary objective of this research is to detect neonatal seizures and explain these seizures using the new version of Directed Lobish. This research uses a publicly available neonatal EEG signal dataset to get comparative results. In order to classify these EEG signals, an explainable feature engineering (EFE) model has been proposed. In this EFE model, there are four essential phases and these phases: (i) automaton and transformer-based feature extraction, (ii) feature selection deploying cumulative weight-based neighborhood component analysis (CWNCA), (iii) the Directed Lobish (DLob) and Causal Connectome Theory (CCT)-based explainable result generation and (iv) classification deploying t algorithm-based support vector machine (tSVM). In the first phase, we have used a channel transformer to get channel numbers and these values have been divided into three levels and these levels are named (1) high, (2) medium and (3) low. By utilizing these levels, we have created an automaton and this automaton has three nodes (each node defines each level). In the feature extraction phase, transition tables of these nodes has been extracted. Therefore, the proposed feature extraction function is termed Triple Nodes Automaton-based Transition table Pattern (TATPat). The used EEG signal dataset contains 19 channels and there are 9 (= 3 2 ) connection in the defined automaton. Thus, the presented TATPat extracts 3249 (= 19 × 19 × 9) features from each EEG segment. To choose the most informative features of these 3249 features, a new feature selector which is CWNCA has been applied. By cooperating findings of this feature selector and the presented DLob, the explainable results have been obtained. The last phase is the classification phase and to get high classification performance from this phase, an ensemble classifier (tSVM) has been presented and the classification results have been obtained using two validation techniques which are 10-fold cross-validation (CV) and leave-one subject-out (LOSO) CV. The proposed EFE model generates a DLob string and by using this string, the explainable results have been obtained. Moreover, the presented EFE model attained 99.15% and 76.37% classification accuracy deploying 10-fold and LOSO CVs respectively. According to the classification performances, the recommended TATPat-based EFE is a good model at EEG signal classification. Also, the presented TATPat-based EFE model is a good model for explainable artificial intelligence (XAI) since TTPat-based EFE is cooperating by the DLob.
The most cost-effective data collection method is electroencephalography (EEG) to obtain meaningful information about the brain. Therefore, EEG signal processing is very important for neuroscience and machine learning (ML). The primary objective of this research is to detect neonatal seizures and explain these seizures using the new version of Directed Lobish. This research uses a publicly available neonatal EEG signal dataset to get comparative results. In order to classify these EEG signals, an explainable feature engineering (EFE) model has been proposed. In this EFE model, there are four essential phases and these phases: (i) automaton and transformer-based feature extraction, (ii) feature selection deploying cumulative weight-based neighborhood component analysis (CWNCA), (iii) the Directed Lobish (DLob) and Causal Connectome Theory (CCT)-based explainable result generation and (iv) classification deploying t algorithm-based support vector machine (tSVM). In the first phase, we have used a channel transformer to get channel numbers and these values have been divided into three levels and these levels are named (1) high, (2) medium and (3) low. By utilizing these levels, we have created an automaton and this automaton has three nodes (each node defines each level). In the feature extraction phase, transition tables of these nodes has been extracted. Therefore, the proposed feature extraction function is termed Triple Nodes Automaton-based Transition table Pattern (TATPat). The used EEG signal dataset contains 19 channels and there are 9 (= 3 2 ) connection in the defined automaton. Thus, the presented TATPat extracts 3249 (= 19 × 19 × 9) features from each EEG segment. To choose the most informative features of these 3249 features, a new feature selector which is CWNCA has been applied. By cooperating findings of this feature selector and the presented DLob, the explainable results have been obtained. The last phase is the classification phase and to get high classification performance from this phase, an ensemble classifier (tSVM) has been presented and the classification results have been obtained using two validation techniques which are 10-fold cross-validation (CV) and leave-one subject-out (LOSO) CV. The proposed EFE model generates a DLob string and by using this string, the explainable results have been obtained. Moreover, the presented EFE model attained 99.15% and 76.37% classification accuracy deploying 10-fold and LOSO CVs respectively. According to the classification performances, the recommended TATPat-based EFE is a good model at EEG signal classification. Also, the presented TATPat-based EFE model is a good model for explainable artificial intelligence (XAI) since TTPat-based EFE is cooperating by the DLob.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.