1996
DOI: 10.3354/meps139281
|View full text |Cite
|
Sign up to set email alerts
|

Automatic classification of field-collected dinoflagellates by artificial neural network

Abstract: Automatic taxonomic categorisation of 23 species of dinoflagellates was demonstrated using field-collected specimens. These dinoflagellates have been responsible for the majority of toxic and noxious phytoplankton blooms which have occurred in the coastal waters of the European Union in recent years and make severe impact on the aquaculture industry. The performance by human 'expert' ecologists/taxonon~ists in identifying these species was compared to that achieved by 2 art~fi-cial neural network classifiers (… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
58
0
1

Year Published

2000
2000
2018
2018

Publication Types

Select...
6
2
1

Relationship

0
9

Authors

Journals

citations
Cited by 80 publications
(59 citation statements)
references
References 4 publications
0
58
0
1
Order By: Relevance
“…Microscopic analysis in the laboratory is laborious and time-consuming, abundance estimates are uncertain due to limitations on the number of cells that can be counted, and interesting phenomena cannot be followed up directly because analysis is often performed a long time after sampling. The use of image analysis is one possibility, and has been used successfully to discriminate 23 dinoflagellate species (Culverhouse et al 1996). It is, however, computationally intensive.…”
Section: Introductionmentioning
confidence: 99%
“…Microscopic analysis in the laboratory is laborious and time-consuming, abundance estimates are uncertain due to limitations on the number of cells that can be counted, and interesting phenomena cannot be followed up directly because analysis is often performed a long time after sampling. The use of image analysis is one possibility, and has been used successfully to discriminate 23 dinoflagellate species (Culverhouse et al 1996). It is, however, computationally intensive.…”
Section: Introductionmentioning
confidence: 99%
“…Je désire remercier mon directeur de recherche, M. Jean-François Méthot, pour la Dans la littérature, il est fait mention du fait que certaines expériences portant sur la classification du phytoplancton au moyen de la vision artificielle étaient vouées à l'échec dû à la complexité des formes et aux espèces apparentées apparaissant dans le même échantillon [6,7,23]; les espèces apparentées, non toxiques, pouvant être une source de nombreuses fausses alertes. Divers travaux ont démontré que l'utilisation de paramètres cytométriques permettrait une très bonne discrimination sur des appareils autres que le FLOWCAM [43].…”
Section: Avant-proposunclassified
“…Finally, experiments prove the usefulness of this system, where 201 images are used for classifier training and 299 images are used for testing, and an error rate of 11% is achieved. As a further development of the above work, Culverhouse et al (1996Culverhouse et al ( , 2000 compare the classification performance of four different classifiers in a WM classification task, including multi-layer ANN, RBF network, k-NN and quadratic discriminant analysis algorithms. In this research, basic pixel based features, like pixel values converted by Fast Fourier Transform (FFT), are extracted to represent the WM images.…”
Section: Original Methodsmentioning
confidence: 99%
“…Beneficial AMs can help farmers to increase the agricultural yields, for Shabtai et al (1996), Ronen et al (2002) IM 1998 Gerlach SR et al Gerlach et al (1998) IM 2001 Lee MS et al Lee et al (2001) IM 2002 Lomander A et al Lomander et al (2002) IM 2002 Park JP et al Park et al (2002) IM 2007 Lecault V et al Lecault et al (2007) IM 2011 Yu B et al Yu et al (2011) MM 1992 Reichl U et al Reichl et al (1992) MM 1994 Pichon D et al Pichon et al (1994) MM 1996 Oh B et al Oh et al (1996) MM 1997 Tamura S et al Tamura et al (1997) MM 1998 Veropoulos K et al Veropoulos et al (1998) MM 1998 Wit P et al Wit and Busscher (1998) MM 1999 Kay JW et al Kay et al (1999) MM 2000 Khutlang R et al Khutlang et al (2009Khutlang et al ( , 2010a MM 2011 Rulaningtyas R et al Rulaningtyas et al (2011) MM 2011 Pangilinan C et al Pangilinan et al (2011) MM 2011-2012Osman MK et al Osman et al (2011a, b, 2012 MM 2012 Chang J et al Chang et al (2012b) MM 2012-2016 Priya E et al Priya et al (2012), Srinivasan (2015a, b, 2016) Culverhouse et al (1994Culverhouse et al ( , 1996Culverhouse et al ( , 2000Culverhouse et al ( , 2003Culverhouse et al ( , 2006a WM 1995 Thiel S et al Thiel and Davies (1995), …”
Section: Application Domain Introductionmentioning
confidence: 99%