2022
DOI: 10.1371/journal.pone.0267275
|View full text |Cite
|
Sign up to set email alerts
|

Automatic classification of lymphoma lesions in FDG-PET–Differentiation between tumor and non-tumor uptake

Abstract: Introduction The automatic classification of lymphoma lesions in PET is a main topic of ongoing research. An automatic algorithm would enable the swift evaluation of PET parameters, like texture and heterogeneity markers, concerning their prognostic value for patients outcome in large datasets. Moreover, the determination of the metabolic tumor volume would be facilitated. The aim of our study was the development and evaluation of an automatic algorithm for segmentation and classification of lymphoma lesions i… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2022
2022
2023
2023

Publication Types

Select...
3
1

Relationship

1
3

Authors

Journals

citations
Cited by 4 publications
(2 citation statements)
references
References 28 publications
0
1
0
1
Order By: Relevance
“…Around 40% of major discrepancies in our study fell into this category. Reducing the chances of lymphoma lesions being overlooked is challenging but include approaches such as careful comparison of the iPET with baseline PET scan findings [ 3 ], review by nuclear physicians experienced in lymphoma reading [ 14 ] and the additional use of automatic segmentation algorithms [ 15 ]. However, in our opinion, cases where a lesion is truly “overlooked” are rare.…”
Section: Discussionmentioning
confidence: 99%
“…Around 40% of major discrepancies in our study fell into this category. Reducing the chances of lymphoma lesions being overlooked is challenging but include approaches such as careful comparison of the iPET with baseline PET scan findings [ 3 ], review by nuclear physicians experienced in lymphoma reading [ 14 ] and the additional use of automatic segmentation algorithms [ 15 ]. However, in our opinion, cases where a lesion is truly “overlooked” are rare.…”
Section: Discussionmentioning
confidence: 99%
“…В таком случае необходимо повторить исследование с проведением специальной подготовки перед ним. Безусловно, правильная подготовка пациента, наличие инициальных изображений ПЭТ/КТ для сравнения, дополнительное использование алгоритмов автоматической сегментации [27], подготовка и опыт врача-радиолога в оценке исследований у пациентов с ЛХ позволяют свести к нулю расхождения такого типа. В нашей работе мы не оценивали такие расхождения, так как изначально все ПЭТ/КТ-исследования просматривались и обсуждались 2 врачами-радиологами;…”
Section: таблицаunclassified