2023
DOI: 10.1016/j.aej.2022.07.039
|View full text |Cite
|
Sign up to set email alerts
|

Automatic classification of textile visual pollutants using deep learning networks

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
3
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
7
1

Relationship

1
7

Authors

Journals

citations
Cited by 21 publications
(4 citation statements)
references
References 24 publications
0
3
0
1
Order By: Relevance
“…Sistem inspeksi cacat pada permukaan kayu dengan model deteksi objek YOLOv5 [2]. Penelitian serupa juga dilakukan oleh dengan menggunakan berbagai macam metode antara lain integrasi antara YOLOv5 dan ResNet [7], deep learning [8,9], integrasi antara machine learning dan deep learning [10], FE-YOLOv5 [11], serta YOLOv3 [12]. Selain itu, Aplikasi untuk mendeteksi kualitas daging dikembangkan dengan mengaplikasikan region of interest (ROI) [13].…”
Section: Pendahuluanunclassified
“…Sistem inspeksi cacat pada permukaan kayu dengan model deteksi objek YOLOv5 [2]. Penelitian serupa juga dilakukan oleh dengan menggunakan berbagai macam metode antara lain integrasi antara YOLOv5 dan ResNet [7], deep learning [8,9], integrasi antara machine learning dan deep learning [10], FE-YOLOv5 [11], serta YOLOv3 [12]. Selain itu, Aplikasi untuk mendeteksi kualitas daging dikembangkan dengan mengaplikasikan region of interest (ROI) [13].…”
Section: Pendahuluanunclassified
“…Tasnim et al [21] delved into the application of computer vision techniques to develop an innovative approach for the automatic detection and categorization of visual pollutants associated with the textile industry. Their research focused on three categories of textilebased visual pollutants: cloth litter, advertising billboards, signs, and textile dyeing waste materials.…”
Section: Related Workmentioning
confidence: 99%
“… Chen et al [ 21 ] 2023 ShuffleNet v2- depth-separable convolution model Recyclable waste classification Formulating a combined classification approach based on ShuffleNet v2 and the depth-separable convolution model, enabling efficient classification of recyclable waste. Tasnim et al [ 22 ] 2023 Deep learning Pollutants associated with textiles Introducing an advanced deep learning classifier called EfficientNet, which outperformed KNN and CNN models in detecting and categorizing visual pollutants associated with textiles, including cloth waste, dyeing materials, and advertising displays. Luo et al [ 23 ] 2023 CNN Weed seeds classification Investigating various CNN model structures to determine the most effective approach for classifying weed seeds.…”
Section: Introductionmentioning
confidence: 99%