Proceedings of the 2011 International Conference on Electrical Engineering and Informatics 2011
DOI: 10.1109/iceei.2011.6021502
|View full text |Cite
|
Sign up to set email alerts
|

Automatic classification of tuberculosis bacteria using neural network

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
17
0

Year Published

2012
2012
2020
2020

Publication Types

Select...
4
3
2

Relationship

0
9

Authors

Journals

citations
Cited by 36 publications
(17 citation statements)
references
References 2 publications
0
17
0
Order By: Relevance
“…In Rulaningtyas et al (2011), image segmentation, shape features and an ANN classifier are used in a two-class MM classification task. In this work, 75 MM images are used for training the classifier, 25 images are used for testing, and finally a mean square error of 0.0368% is obtained as the overall evaluation of the classification result.…”
Section: Overview Of MM Classificationmentioning
confidence: 99%
See 1 more Smart Citation
“…In Rulaningtyas et al (2011), image segmentation, shape features and an ANN classifier are used in a two-class MM classification task. In this work, 75 MM images are used for training the classifier, 25 images are used for testing, and finally a mean square error of 0.0368% is obtained as the overall evaluation of the classification result.…”
Section: Overview Of MM Classificationmentioning
confidence: 99%
“…Beneficial AMs can help farmers to increase the agricultural yields, for Shabtai et al (1996), Ronen et al (2002) IM 1998 Gerlach SR et al Gerlach et al (1998) IM 2001 Lee MS et al Lee et al (2001) IM 2002 Lomander A et al Lomander et al (2002) IM 2002 Park JP et al Park et al (2002) IM 2007 Lecault V et al Lecault et al (2007) IM 2011 Yu B et al Yu et al (2011) MM 1992 Reichl U et al Reichl et al (1992) MM 1994 Pichon D et al Pichon et al (1994) MM 1996 Oh B et al Oh et al (1996) MM 1997 Tamura S et al Tamura et al (1997) MM 1998 Veropoulos K et al Veropoulos et al (1998) MM 1998 Wit P et al Wit and Busscher (1998) MM 1999 Kay JW et al Kay et al (1999) MM 2000 Khutlang R et al Khutlang et al (2009Khutlang et al ( , 2010a MM 2011 Rulaningtyas R et al Rulaningtyas et al (2011) MM 2011 Pangilinan C et al Pangilinan et al (2011) MM 2011-2012Osman MK et al Osman et al (2011a, b, 2012 MM 2012 Chang J et al Chang et al (2012b) MM 2012-2016 Priya E et al Priya et al (2012), Srinivasan (2015a, b, 2016) Culverhouse et al (1994Culverhouse et al ( , 1996Culverhouse et al ( , 2000Culverhouse et al ( , 2003Culverhouse et al ( , 2006a WM 1995 Thiel S et al Thiel and Davies (1995), …”
Section: Application Domain Introductionmentioning
confidence: 99%
“…Medical microorganisms (MMs) shown in the third row of Table 1 are investigated for prevention, diagnosis, and treatment of infectious diseases. For example, Rulaningtyas et al present in [12] an approach for automatic classification of tuberculosis bacteria. For this, the authors use seven geometrical characteristics and neural networks for classification.…”
Section: Classification Of Microorganismsmentioning
confidence: 99%
“…Medical Microorganisms (MMs) are investigated for prevention, diagnosis, and treatment of infectious diseases. For example, image segmentation, geometrical features and neural networks are used to detect tuberculosis bacteria [19]. In [24], a system for recognition of MMs is developed, where features are extracted by applying the Gabor-based wavelet method to image segmentation results, and a 3-D morphology-based recognition technique is used to identify the classes of MMs.…”
Section: Related Workmentioning
confidence: 99%