Proceedings of the 29th ACM International Conference on Information &Amp; Knowledge Management 2020
DOI: 10.1145/3340531.3418507
|View full text |Cite
|
Sign up to set email alerts
|

Automatic Contextual Storytelling in a Natural Language Corpus

Abstract: Storytelling is an ancient art and science of conveying wisdom through generations for centuries. Data-driven storytelling in the context of a natural language corpus has a huge potential for conveying fast valuable insights about the corpus for better decision making. But high dimensional unstructured nature of natural language text makes automatic extraction of stories extremely difficult. This PhD research project believes that modern storytelling is a hand in hand approach of contextual topic visualization… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 17 publications
0
1
0
1
Order By: Relevance
“…Hossain et al [16] designed a storytelling algorithm by adding a clique constraint into connecting chains to generate more meaningful stories. Some efforts leverage visualization systems to connect the dots to study stories formed from a corpus [17,21,30,31].…”
Section: Storytellingmentioning
confidence: 99%
“…Hossain et al [16] designed a storytelling algorithm by adding a clique constraint into connecting chains to generate more meaningful stories. Some efforts leverage visualization systems to connect the dots to study stories formed from a corpus [17,21,30,31].…”
Section: Storytellingmentioning
confidence: 99%
“…También se observa la utilidad de la visualización de los resultados del modelado de tópicos, lo cual permite identificar temáticas en un nivel general. Para este ejercicio, la técnica de MDS resulta apropiada y los resultados de su aplicación complementan muy bien la tarea de identificar la distribución de los documentos en temáticas y las relaciones que se puedan dar entre estas (Sami, 2020;Wei et al, 2020;Xie et al, 2018;Zhang et al, 2018).…”
Section: Conclusionesunclassified