in Wiley Online Library (wileyonlinelibrary.com) Integration of scheduling and control involves extensive information exchange and simultaneous decision making in industrial practice (Engell and Harjunkoski, Comput Chem Eng. 2012;47:121-133; Baldea and Harjunkoski I, Comput Chem Eng. 2014;71:377-390). Modeling the integration of scheduling and dynamic optimization (DO) at control level using mathematical programming results in a Mixed Integer Dynamic Optimization which is computationally expensive (Flores-Tlacuahuac and Grossmann, Ind Eng Chem Res. 2006;45(20):6698-6712). In this study, we propose a framework for the integration of scheduling and control to reduce the model complexity and computation time. We identify a piece-wise affine model from the first principle model and integrate it with the scheduling level leading to a new integration. At the control level, we use fast Model Predictive Control (fast MPC) to track a dynamic reference. Fast MPC also overcomes the increasing dimensionality of multiparametric MPC in our previous study (Zhuge and Ierapetritou, AIChE J. 2014;60(9):3169-3183). Results of CSTR case studies prove that the proposed approach reduces the computing time by at least two orders of magnitude compared to the integrated solution using mp-MPC. V C 2015 American Institute of Chemical Engineers AIChE J, 61: 3304-3319, 2015 Keywords: integration of scheduling and control, piece-wise affine approximation, fast model predictive control, Multiparametric model predictive control, mixed integer nonlinear programming