2022
DOI: 10.36227/techrxiv.19682754
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Automatic detection of code smells using metrics and CodeT5 embeddings: a case study in C#

Abstract: Code smells are code structures that harm the software’s quality. An obstacle to developing automatic detectors is the available datasets' limitations. Furthermore, researchers developed many solutions for Java while neglecting other programming languages. Recently, we created the code smell dataset for C# by following an annotation procedure inspired by the established annotation practices in Natural Language Processing. This paper evaluates Machine Learning (ML) code smell detection approaches on our novel d… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 35 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?