Band ratio measures, computed as the ratio of power between two frequency bands, are a common analysis measure in neuro-electrophysiological recordings. Band ratio measures are typically interpreted as reflecting quantitative measures of periodic, or oscillatory, activity. This assumes that the measure reflects relative powers of distinct periodic components that are well captured by predefined frequency ranges. However, electrophysiological signals contain periodic components and a 1/f-like aperiodic component, the latter of which contributes power across all frequencies. Here, we investigate whether band ratio measures truly reflect oscillatory power differences, and/or to what extent ratios may instead reflect other periodic changes-such as in center frequency or bandwidth-and/or aperiodic activity. In simulation, we investigate how band ratio measures relate to changes in multiple spectral features, and show how multiple periodic and aperiodic features influence band ratio measures. We validate these findings in human electroencephalography (EEG) data, comparing band ratio measures to parameterizations of power spectral features, and find that multiple disparate features influence ratio measures. For example, the commonly applied theta / beta ratio is most reflective of differences in aperiodic activity, and not oscillatory theta or beta power. Collectively, we show that periodic and aperiodic features can create the same observed changes in band ratio measures, and that this is inconsistent with their typical interpretations as measures of periodic power. We conclude that band ratio measures are a non-specific measure, conflating multiple possible underlying spectral changes, and recommend explicit parameterization of neural power spectra as a more specific approach. Band Ratios 3 Significance Statement Neural oscillations are a ubiquitous feature of investigation in electrophysiological recordings. Frequency band ratio measures are a common approach to investigate neural oscillations, applied across cognitive and clinical neuroscience, and in recording modalities such as in electroencephalography and local field potentials. In this work we systematically investigate the methodological properties of band ratio measures. We show that band ratio measures are not specific to measuring oscillatory power, as they are intended and interpreted to do. Rather, they often reflect other features of the data, such as aperiodic, or 1/f-like, activity. These findings are significant for interpreting prior empirical and clinical research, guiding future work, and another motivation that aperiodic neural activity should be a key consideration when studying electrophysiological data.