2023
DOI: 10.3390/life13030629
|View full text |Cite
|
Sign up to set email alerts
|

Automatic Differentiation for Inverse Problems in X-ray Imaging and Microscopy

Abstract: Computational techniques allow breaking the limits of traditional imaging methods, such as time restrictions, resolution, and optics flaws. While simple computational methods can be enough for highly controlled microscope setups or just for previews, an increased level of complexity is instead required for advanced setups, acquisition modalities or where uncertainty is high; the need for complex computational methods clashes with rapid design and execution. In all these cases, Automatic Differentiation, one of… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2024
2024
2024
2024

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
(2 citation statements)
references
References 141 publications
0
1
0
1
Order By: Relevance
“…1 ); therefore, software packages for working with EM are suitable for reconstructing the volume from tilt series, for segmentation, and for subsequent data analysis [ 12 , 13 , 20 ]. Specialized tools are also being developed for working with cryo-SXT data, performing image restoration, and increasing their information yield [ 21 ], thus lightening the most operator-dependent steps: segmentation of three-dimensional data, as well as isolation of the contours and surfaces of organoids from the array of “voxels” [ 22 , 23 ].…”
Section: Principles Of Sxm and How It Compares With Other Types Of Mi...mentioning
confidence: 99%
See 1 more Smart Citation
“…1 ); therefore, software packages for working with EM are suitable for reconstructing the volume from tilt series, for segmentation, and for subsequent data analysis [ 12 , 13 , 20 ]. Specialized tools are also being developed for working with cryo-SXT data, performing image restoration, and increasing their information yield [ 21 ], thus lightening the most operator-dependent steps: segmentation of three-dimensional data, as well as isolation of the contours and surfaces of organoids from the array of “voxels” [ 22 , 23 ].…”
Section: Principles Of Sxm and How It Compares With Other Types Of Mi...mentioning
confidence: 99%
“…1), поэтому для реконструкции объема по сериям угловых проекций, сегментации и последующего анализа пригодны программные пакеты для работы с ЭМ-данными [12,13,20]. Разрабатываются и специализированные средства для работы с данными ктМРД, осуществляющие восстановление изображений и повышение их информативности [21], облегчающие самый оператор-зависимый этап -сегментацию трехмерных данных, вычленение из массива «вокселей» контуров и поверхностей органоидов [22,23].…”
Section: принципы мрм и ее сравнение с другими видами микроскопииunclassified