“…Their results showed that the most discriminative features for neonatal seizure detection 1 are morphological based features, such as amplitude, shape and duration of waveforms. In addition, time domain features such as statistical features (Adjouadi et al, 2005), Hjorth's descriptors (Hjorth, 1970), nonlinear features (Kannathal, Acharya, Lim, & Sadasivan, 2005;McSharry, et al, 2002)-correlation dimension (Elger & Lehnertz, 1998), Lyapunov exponent Ubeyli, 2006;Ubeyli, 2010b) and other features obtained from convolution kernels (Adjouadi et al, 2004), eigenvector methods (Naghsh-Nilchi & Aghashahi, 2010 ; Ubeyli, 2008aUbeyli, , 2008bUbeyli, , 2009a, principal component analysis (PCA) (Ghosh-Dastidar, Adeli, & Dadmehr, 2008;Hesse & James, 2007;James & Hesse, 2005;Polat & Gunes, 2008a;Subasi & Gursoy, 2010), ICA (Hesse & James, 2007;James & Hesse, 2005;Subasi & Gursoy, 2010), crosscorrelation function (Chandaka, Chatterjee, & Munshi, 2009;Iscan, et al, 2011), and entropy (Guo, Rivero, Dorado, et al, 2010;Kannathal, Choo, Acharya, & Sadasivan, 2005;Liang, Wang, & Chang, 2010;Naghsh-Nilchi & Aghashahi, 2010 ;H. Ocak, 2009;Srinivasan, Eswaran, & Sriraam, 2007;Wang, et al, 2011) have been proposed to characterize the EEG signal.…”