Original citation:Fan, Xijian and Tjahjadi, Tardi. (2015) A spatial-temporal framework based on histogram of gradients and optical flow for facial expression recognition in video sequences. Pattern Recognition, 48 (11 Copies of full items can be used for personal research or study, educational, or not-forprofit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
AbstractFacial expression causes different parts of the facial region to change over time and thus dynamic descriptors are inherently more suitable than static descriptors for recognising facial expressions. In this paper, we extend the spatial pyramid histogram of gradients to spatio-temporal domain to give 3-dimensional facial features and integrate them with dense optical flow to give a spatio-temporal descriptor which extracts both the spatial and dynamic motion information of facial expressions. A multi-class support vector machine based classifier with one-to-one strategy is used to recognise facial expressions. Experiments on the CK+ and MMI datasets using leave-one-out cross validation scheme demonstrate that the integrated framework achieves a better performance than using individual descriptor separately. Compared with six state of the art methods, the proposed framework demonstrates a superior performance.