2019
DOI: 10.1007/978-981-13-9190-3_84
|View full text |Cite
|
Sign up to set email alerts
|

Automatic Finger Tendon Segmentation from Ultrasound Images Using Deep Learning

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2020
2020
2020
2020

Publication Types

Select...
1

Relationship

1
0

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 11 publications
0
1
0
Order By: Relevance
“…A newly developed CNN, called the fully convolutional DenseNet (FC-DenseNet) [21], incorporates the fully convolutional network (FCN) with the DenseNet, which has been demonstrated to be a powerful method for object segmentation. In our preliminary work [22], we attempted to apply FC-DenseNet for the segmentation of tendons from ultrasound images; however, the average dice similarity coefficient (DSC) was only 0.88 for 380 test images.…”
Section: Introductionmentioning
confidence: 99%
“…A newly developed CNN, called the fully convolutional DenseNet (FC-DenseNet) [21], incorporates the fully convolutional network (FCN) with the DenseNet, which has been demonstrated to be a powerful method for object segmentation. In our preliminary work [22], we attempted to apply FC-DenseNet for the segmentation of tendons from ultrasound images; however, the average dice similarity coefficient (DSC) was only 0.88 for 380 test images.…”
Section: Introductionmentioning
confidence: 99%