Polishing process is one of the manufacturing issues that are essential in the production flow, but it generates the major amount of defects on parts. Finishing tasks in which polishing is included are performed in the final steps of the manufacturing sequence. Any defect in these steps implies rejection of the part, generating a big amount of scrap and generating a huge amount of energy consumption, emission, and time to manufacture and replace the rejected part. Traditionally polishing process has not evolved during the last 30 years, while other manufacturing processes have been automated and technologically improved. Finishing processes (grinding and polishing), are still manually performed, especially in freeform surface parts, but to be sustainable some development and automation have to be introduced. This research proposes a novel polishing system based on robotics and artificial vision. The application of this novel system has allowed reducing the failed parts due to finishing process down to zero percent from 28% of rejected parts with manual polishing process. The reduction in process time consumption, and amount of scrapped parts, has reduced the energy consumption up to 30% in finishing process and 20% in whole manufacturing process for an injection moulded aluminium part for automotive industry with high production volumes.