One word for another? Analysis and comparison of eight automatic transcription platforms. This article compares the functionalities and results of eight automatic transcription platforms (Go Transcribe, Happy Scribe, Headliner, Sonix, Video Indexer, Vocalmatic, Vocapia and YouTube), for audio samples in French. We propose an original methodology, designed through an interdisciplinary work, to compare the transcriptions. It combines three complementary approaches: (1) a quantitative approach which compares the textual outcomes using a common metric, the Word Error Rate (WER), (2) a fine-grained approach to classify and understand the errors generated by the platforms, and finally (3) an approach estimating the amount of transcription time which can be saved for each file on each platform. We show that no platform surpassed the others for all the samples, but two nevertheless stood out: Vocapia and Sonix, each with their own areas of expertise. Regardless of the type of file or platform, listening and correcting the text remains a necessary step. However the use of such tools can save up to 75% of time compared with manual transcription. Yet, the use of these online tools can create major problems relating to data confidentiality and security. Finally, we reflect on the interdisciplinary setting that made this project possible.