2011
DOI: 10.1007/s10921-011-0118-4
|View full text |Cite
|
Sign up to set email alerts
|

Automatic Inspection System of Welding Radiographic Images Based on ANN Under a Regularisation Process

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
14
0
1

Year Published

2013
2013
2020
2020

Publication Types

Select...
5
3
2

Relationship

0
10

Authors

Journals

citations
Cited by 40 publications
(15 citation statements)
references
References 13 publications
0
14
0
1
Order By: Relevance
“…Naárea de pesquisa relacionada ao suporte eà automação da inspeção radiográfica de juntas soldadas, a maior parte da literatura emprega técnicas rasas de aprendizado de máquina (como Sistemas Fuzzy [Baniukiewicz 2014, Liao 2003], redes Multilayer Perceptron [Zapata et al 2012, Nacereddine e Tridi 2005 e Support Vector Machine [Duan et al 2019]). Tais técnicas necessitam do design manual dos atributos relevantes ao problema, resultando em abordagens, geralmente, com alta dependência de parâmetros manuais.…”
Section: Trabalhos Relacionadosunclassified
“…Naárea de pesquisa relacionada ao suporte eà automação da inspeção radiográfica de juntas soldadas, a maior parte da literatura emprega técnicas rasas de aprendizado de máquina (como Sistemas Fuzzy [Baniukiewicz 2014, Liao 2003], redes Multilayer Perceptron [Zapata et al 2012, Nacereddine e Tridi 2005 e Support Vector Machine [Duan et al 2019]). Tais técnicas necessitam do design manual dos atributos relevantes ao problema, resultando em abordagens, geralmente, com alta dependência de parâmetros manuais.…”
Section: Trabalhos Relacionadosunclassified
“…Abderrazak et al [10] established a welding quality evaluation method of ANN by simulating welding parameters (welding time, current, voltage, thickness, etc.). Zapata et al [11] modified the ANN to improve the detection accuracy of individual and overall defect characteristics. Yuan et al [12] studied adaptive organization and adaptive feed-forward neural network to figure out the essential features of defects and effectively reduce identification errors.…”
Section: Introductionmentioning
confidence: 99%
“…In the literature related to classification of welding defects, the researchers have used different feature extraction techniques such as Principal Component Analysis (PCA) [3], self organizing map [4], ant colony optimization technique [5] to classify the weld defects. But these techniques produce good results when they are applied on weld defects having less similarity in geometric and texture information.…”
Section: Introductionmentioning
confidence: 99%