To quickly and accurately identify the pathological features of the tongue, we developed an intelligent tongue diagnosis system that uses deep learning on a mobile terminal. We also propose an efficient and accurate tongue image processing algorithm framework to infer the category of the tongue. First, a software system integrating registration, login, account management, tongue image recognition, and doctor–patient dialogue was developed based on the Android platform. Then, the deep learning models, based on the official benchmark models, were trained by using the tongue image datasets. The tongue diagnosis algorithm framework includes the YOLOv5s6, U-Net, and MobileNetV3 networks, which are employed for tongue recognition, tongue region segmentation, and tongue feature classification (tooth marks, spots, and fissures), respectively. The experimental results demonstrate that the performance of the tongue diagnosis model was satisfying, and the accuracy of the final classification of tooth marks, spots, and fissures was 93.33%, 89.60%, and 97.67%, respectively. The construction of this system has a certain reference value for the objectification and intelligence of tongue diagnosis.