This version is available at https://strathprints.strath.ac.uk/54441/ Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.ukThe Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output. ABSTRACT Accurate sea-ice segmentation from satellite synthetic aperture radar (SAR) images plays an important role for understanding the interactions between sea-ice, ocean and atmosphere in the Arctic. Processing sea-ice SAR images are challenging due to poor spatial resolution and severe speckle noise. In this paper, we present a multi-stage method for the sea-ice SAR image segmentation, which includes edge-preserved filtering for preprocessing, k-means clustering for segmentation and conditional morphology filtering for post-processing. As such, the effect of noise has been suppressed and the undersegmented regions are successfully corrected.
EFFECTIVE SAR SEA ICE IMAGE SEGMENTATION AND TOUCH FLOE SEPARATION USING A COMBINED MULTI-STAGE APPROACH