Particulate processes can be modeled by means of populations balances. This is an important class of nonlinear partial differential equations with many applications in chemical and biochemical engineering. Major challenges are multidimensional problems, coupling with nonideal flow fields and feedback control. Possible solution approaches to these problems are presented and illustrated with different types of process applications including fluidized bed spray granulation, crystallization and influenza vaccine production processes. Ïðîöåññû â ìàêðî÷àñòèöàõ ìîaeíî ìîäåëèðîâàòü, èñïîëüçóÿ ïîïóëÿöèîííûé áàëàíñ.Îí ïðåäñòàâëÿåò ñîáîé âàaeíûé êëàññ íåëèíåéíûõ äèôôåðåíöèàëüíûõ óðàâíåíèé â ÷àñòíûõ ïðîèçâîäíûõ è øèðîêî ïðèìåíÿåüñÿ â õèìè÷åñêîé è áèîõèìè÷åñêîé èíaeåíåðèè. Îñíîâíûìè ïðîáëåìàìè ïðè ýòîì ÿâëÿþòñÿ ìíîãîìåðíûå çàäà÷è, âçàèìîñâÿçü ñ íåèäåàëüíûìè ïîëÿìè òå÷åíèÿ è óïðàâëåíèå ñ îáðàòíûìè ñâÿçÿìè.  ðàáîòå ïðåäñòàâëåííû âîçìîaeíûå ïîäõîäû ê ðåøåíèþ ýòèõ çàäà÷ íà ïðèìåðå ðàçëè÷íûõ ïðîöåññîâ, òàêèõ êàê ãðàíóëÿöèÿ â êèïÿùåì ñëîå, êðèñòàëèçàöèÿ è ïðîöåññû ïðîèçâîäñòâà âàêöèí îò ãðèïïà. K e y w o r d s: partial differential equations, population balances, control, model reduction, proper orthogonal decomposition, direct quadrature method of moments.