OCEANS 2016 - Shanghai 2016
DOI: 10.1109/oceansap.2016.7485598
|View full text |Cite
|
Sign up to set email alerts
|

Automatic object detection and segmentation from underwater images via saliency-based region merging

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
10
0
1

Year Published

2017
2017
2024
2024

Publication Types

Select...
8
2

Relationship

0
10

Authors

Journals

citations
Cited by 18 publications
(11 citation statements)
references
References 10 publications
0
10
0
1
Order By: Relevance
“…Su altı görüntülerinde insan yapımı nesnelerin tespiti için belirginlik tabanlı bölge birleştirme algoritmaları gibi farklı algoritmalarda geliştirilmiş ve test edilmiştir (Williams & Groen, 2011), (Zhu et al, 2016).…”
Section: Introductionunclassified
“…Su altı görüntülerinde insan yapımı nesnelerin tespiti için belirginlik tabanlı bölge birleştirme algoritmaları gibi farklı algoritmalarda geliştirilmiş ve test edilmiştir (Williams & Groen, 2011), (Zhu et al, 2016).…”
Section: Introductionunclassified
“…As an extension to this method, an updated model was proposed by combining a number of low-complexity but moderately accurate color feature detectors [13,14]. Moreover, saliency detection methods have been introduced to initially identify the region of underwater objects [15][16][17][18][19]. e problem is obvious, as common image features are possibly nonsalient owing to the light attenuation effect.…”
Section: Object Detection From Underwater Imagesmentioning
confidence: 99%
“…Zhu et al proposed an underwater object detection method based on the discriminative regional feature integration. In this method, three features, including regional contrast, regional property, and regional background descriptors, are jointly used to establish a comprehensive saliency map for underwater images [18].…”
Section: A Underwater Object Segmentationmentioning
confidence: 99%